
CS106A
Winter 2011-2012

Handout #06
January 11, 2011

Assignment 1: Email and Karel the Robot

 Based on a handout by Eric Roberts and Mehran Sahami

In this first assignment, you'll see just how powerful Karel the Robot can be as you use him to solve a
variety of programming problems. But first, Keith and Jeremy would really like to meet you! Since
we'll be using email as a primary means of communication in this course, we'd like it if you could take
the time to send us an email introducing yourself.

This assignment consists of two parts:

Email Us! Due Sunday, January 22 at 11:59PM

Karel the Robot Due Friday, January 20 at 3:15PM

Part One: Email Us! (Due Sunday, January 22 at 11:59PM)

Email is really the preferred communications medium in CS106A. We will expect you to read your
mail regularly through the quarter and encourage you to use email to communicate with the course
staff. Although many of you probably do so much more often (and I do mean much, much more often),
you should be sure to check your mailbox at least once every two days. You should also make sure to
get enough fruits and vegetables in your diet, but that’s not important right now. You will find this part
of the assignment should only take you about a few minutes!

Please send an email to Keith (htiek@cs.stanford.edu), head TA Jeremy (jkeeshin@cs.stanford.edu),
and your section leader. Note that you won't know your section leader's email address until after your
first section, which is why we don't make this part of the assignment due until Sunday. Please make
sure that the subject line of your email says “CS106A Email: <your name>”, where “<your name>” is
actually filled in with your name. The message should also include answers to the questions below.

Note: None of the items in your email to us are binding (i.e., you can always change which platform
you work on). The point of this assignment is just for us to learn a little more about you!

Questions to answer in your email to us:

General information and computing background:

1. What is your name?

2. What year are you? (Frosh, Soph., Junior, Senior, Graduate, Other)

3. What is your major/area of study? (“I'm not sure” and “I don't know” are perfectly
reasonable answers here!)

4. What type of computer (PC, Mac, Linux, etc.) do you prefer using?

5. What is your gender (Male, Female)?

6. Why are you taking CS106A?

Fun Stuff: This final section is just for us to have something to remember you by.

1. What do you do for fun?

2. Tell a quick anecdote about something that you feel makes you unique... a talent,
experience, anything.

- 1 -

mailto:htiek@cs.stanford.edu
mailto:jkeeshin@cs.stanford.edu

Part Two (The Real Assignment): Karel the Robot

The real problem solving portion of this assignment consists of four Karel programs. There is a starter
project including all of these problems on the CS106 web site in the area for Assignment 1. When you
want to work on these programs, you need to download that starter folder as described in Handout #05
(Using Karel in Eclipse). From there, you need to edit the program files so that the assignment actually
does what it’s supposed to do, which will involve a cycle of coding, testing, and debugging until
everything works. The final step is to submit your assignment using the Submit Project entry under the
Stanford Menu. Remember that you can submit your programs as you finish them and that you can
submit more than one version of your project. If you discover an error after you’ve submitted one of
these problems, just fix your program and submit a new copy.

Also, please remember that your Karel programs must limit themselves to the language features
described in Karel the Robot Learns Java in the Karel and SuperKarel classes. You may not
use other features of Java, even though the Eclipse-based version of Karel accepts them.

The four Karel problems to solve are described at the end of this handout.

- 2 -

Problem 1: CollectNewspaperKarel

Your first task is to solve a simple story-problem in Karel’s world. Suppose that Karel has settled into
its house, which is the square area in the center of the following diagram:

1 2 3 4 5 6 7

1

2

3

4

5

Karel starts off in the northwest corner of its house as shown in the diagram. The problem you need to
get Karel to solve is to collect the newspaper—represented (as all objects in Karel’s world are) by a
beeper—from outside the doorway and then to return to its initial position.

This exercise is extremely simple and exists just to get you started. You can assume that every part of
the world looks just as it does in the diagram. The house is exactly this size, the door is always in the
position shown, and the beeper is just outside the door. Thus, all you have to do is write the sequence
of commands necessary to have Karel

1. Move to the newspaper,

2. Pick it up, and

3. Return to its starting point.

Even though the program is only a few lines, it is still worth getting at least a little practice in
decomposition. In your solution, include a private method for each of the steps shown in the outline.

A Word of Advice

Before you go on to the harder problems on this assignment, why don’t you try
submitting your project as soon as you are done with this first problem? Every year,
a handful of students run into some kind of problem with the electronic submission
option provided in the Stanford version of Eclipse. If you wait until 3:00P.M. on
Friday before you submit any of your work, you may discover that there is some
aspect of the submission process that you didn’t quite understand only after it’s too
late to get any help. So right now, as soon as you’ve got this first program working,
go ahead and hit the submit button to make sure that you can ship things off. Once
you’ve done so, you’ll know that you’ve got the submission process under control.
Remember, we only look at the last submission you make before the due date, so it
doesn’t hurt to submit new versions of your solution as you finish them.

- 3 -

Problem 2: StoneMasonKarel

Karel has been hired to repair the damage done to the Quad in the 1989 earthquake. In particular, Karel
is to repair a set of arches where some of the stones (represented by beepers, of course) are missing
from the columns supporting the arches, as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

When Karel is done, the missing stones in the columns should be replaced by beepers, so that the final
picture resulting from the world shown above would look like this:

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

Your program should work on the world shown above, but it should be general enough to handle any
world that meets certain basic conditions as outlined at the end of this problem. There are several
example worlds in the starter folder, and your program should work correctly with all of them.

Karel’s final location and the final direction he is facing at end of the run do not matter. Karel may
count on the following facts about the world, listed below:

- 4 -

• Karel starts at 1st Avenue and 1st Street, facing east, with an infinite number of beepers in Karel’s
beeper bag.

• The columns are exactly four units apart, on 1st, 5th, 9th Avenue, and so forth.
• The end of the columns is marked by a wall immediately after the final column. This wall section

appears after 13th Avenue in the example, but your program should work for any number of
columns.

• The top of the column is marked by a wall, but Karel cannot assume that columns are always five
units high, or even that all columns are the same height.

• Some of the corners in the column may already contain beepers representing stones that are still in
place. Your program should not put a second beeper on these corners.

Problem 3: CheckerboardKarel

In this exercise, your job is to get Karel to create a checkerboard pattern of beepers inside an empty
rectangular world, as illustrated in the following before-and-after diagram. (Karel’s final location and
the final direction it is facing at end of the run do not matter.)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Before

1 2 3 4 5 6 7 8

After

This problem has a nice decomposition structure along with some interesting algorithmic issues. As
you think about how you will solve the problem, you should make sure that your solution works with
checkerboards that are different in size from the standard 8x8 checkerboard shown in the example.
Odd-sized checkerboards are tricky, and you should make sure that your program generates the
following pattern in a 5x3 world:

1

2

3

1 2 3 4 5

Another special case you need to consider is that of a world which is only one column wide or one row
high. The starter folder contains several sample worlds that test these special cases, and you should
make sure that your program works for each of them.

- 5 -

Problem 4: MidpointFindingKarel

As an exercise in solving algorithmic problems, program Karel to place a single beeper at the center of
1st Street. For example, if Karel starts in the world

1 2 3 4 5

1

2

3

4

5

it should end with Karel standing on a beeper in the following position:

1 2 3 4 5

1

2

3

4

5

Note that the final configuration of the world should have only a single beeper at the midpoint of 1st
Street. Along the way, Karel is allowed to place additional beepers wherever it wants to, but must pick
them all up again before it finishes.

In solving this problem, you may count on the following facts about the world:

• Karel starts at 1st Avenue and 1st Street, facing east, with an infinite number of beepers in its bag.

• The initial state of the world includes no interior walls or beepers.

• The world need not be square, but you may assume that it is at least as tall as it is wide.

Your program, moreover, can assume the following simplifications:

• If the width of the world is odd, Karel must put the beeper in the center square. If the width is even,
Karel may drop the beeper on either of the two center squares.

• It does not matter which direction Karel is facing at the end of the run.

The interesting part of this assignment is to come up with a strategy that works. There are many
different algorithms you can use to solve this problem, so be creative and have fun coming up with
one!

- 6 -

Advice, Tips, and Tricks

All of the Karel problems you will solve (except for CollectNewspaperKarel) should be able to
work in a variety of different worlds. When you first run your Karel programs, you will be presented
with a sample world in which you can get started writing and testing your solution. However, we will
test your solutions to each of the Karel programs (except for CollectNewspaperKarel) in a
variety of test worlds. Unfortunately, each quarter, many students submit Karel programs that work
brilliantly in the default worlds but which fail catastrophically in some of the other test worlds. Before
you submit your Karel programs, be sure to test them out in as many different worlds as you can.
We've provided several test worlds in which you can experiment, but you should also develop your
own worlds for testing.

When writing your Karel programs, to the maximum extent possible, try to use the top-down design
techniques we developed in class. Break the task down into smaller pieces until each subtask is
something that you know how to do using the basic Karel commands and control statements. These
Karel problems are somewhat tricky, but appropriate use of top-down design can greatly simplify them.
Check out the Karel Examples (released on Friday) handout for more details, or look over the code
from lecture for more examples.

As mentioned in class, it is just as important to write clean and readable code as it is to write correct
and functional code. A portion of your grade on this assignment (and the assignments that follow) will
be based on how well-styled your code is. Before you submit your assignment, take a minute to review
your code to check for stylistic issues like these:

• Have you added comments to your methods? To make your program easier to read, you can
add comments before and inside your methods to make your intention clearer. Good comments
give the reader a clue about what a method does and, in some cases, how it works. Did you add
comments to your methods to indicate what they do?

Not-so-Good Code Good Code

public void fillRowWithBeepers() {
 while (frontIsClear()) {
 putBeeper();
 move();
 }
 putBeeper();
}

/* Makes Karel move to the end of
 * the row, dropping a beeper
 * before each step he takes.
 *
 * Precondition: None
 * Postcondition: Karel is facing
 * the same direction as before,
 * and every step between Karel's
 * old position and new position
 * has had a beeper added to it.
 */
public void fillRowWithBeepers() {
 while (frontIsClear()) {
 putBeeper();
 move();
 }
 putBeeper();
}

- 7 -

• Is your code indented properly? In Java, each line of code can be indented by any amount.
Does your indentation help show how the different pieces of code are related to one another?
For example:

Not-so-Good Code Good Code

public void run() {
 move();
while (frontIsClear()) {
 move();
 turnRight();
if (beepersPresent()) {
 pickBeeper();
}
}
}

public void run() {
 move();
 while (frontIsClear()) {
 move();
 turnRight();
 if (beepersPresent()) {
 pickBeeper();
 }
 }
}

• Did you decompose the problem? There are many ways to break these Karel problems down
into smaller, more manageable pieces. Breaking the problem apart elegantly will result in a
small number of easy-to-read methods, each of which performs just one small task. Breaking
the problem apart in other ways may result in methods that are trickier to understand and test.
Look over your code and check to see whether you've decomposed the problem into smaller
pieces. Does your code consist of a few enormous methods (not so good), or many smaller
methods (good)?

This is not an exhaustive list of stylistic conventions, but it should help you get started. As always, if
you have any questions on what constitutes good style, feel free to stop on by the Tresidder LaIR with
questions, come visit us during office hours, or email your section leader with questions!

Good luck!

- 8 -

